

MATHEMATICS Paper - II

Time Allowed: Three Hours

Maximum Marks: 200

Question Paper Specific Instructions

Please read each of the following instructions carefully before attempting questions:

There are EIGHT questions in all, out of which FIVE are to be attempted.

Questions no. 1 and 5 are compulsory. Out of the remaining SIX questions, THREE are to be attempted selecting at least ONE question from each of the two Sections A and B.

Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question shall be counted even if attempted partly. Any page or portion of the page left blank in the Question-cum-Answer Booklet must be clearly struck off.

All questions carry equal marks. The number of marks carried by a question/part is indicated against it.

Answers must be written in **ENGLISH** only.

Unless otherwise mentioned, symbols and notations have their usual standard meanings. Assume suitable data, if necessary, and indicate the same clearly.

SECTION A

- Q1. (a) If in a group G there is an element a of order 360, what is the order of a^{220} ? Show that if G is a cyclic group of order n and m divides n, then G has a subgroup of order m.
 - (b) Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent series of real numbers.

Suppose
$$\sum_{n=1}^{\infty} a_{2n} = \frac{9}{8}$$
 and $\sum_{n=0}^{\infty} a_{2n+1} = \frac{-3}{8}$. What is $\sum_{n=1}^{\infty} a_n$?

Justify your answer. (Majority of marks is for the correct justification).

(c) Let $u(x, y) = \cos x \sinh y$. Find the harmonic conjugate v(x, y) of u and express u(x, y) + i v(x, y) as a function of z = x + iy.

8

(d) Solve graphically:

Maximize
$$z = 7x + 4y$$

subject to $2x + y \le 2$, $x + 10y \le 10$ and $x \le 8$.

(Draw your own graph without graph paper).

10

- Q2. (a) If p is a prime number and e a positive integer, what are the elements 'a' in the ring \mathbb{Z}_{p^e} of integers modulo p^e such that $a^2 = a$? Hence (or otherwise) determine the elements in \mathbb{Z}_{35} such that $a^2 = a$.
 - Let X = (a, b]. Construct a continuous function f : X → R (set of real numbers) which is unbounded and not uniformly continuous on X.
 Would your function be uniformly continuous on [a + ε, b], a + ε < b?
 Why?
 - (c) Evaluate the integral $\int_{r} \frac{z^2}{(z^2+1)(z-1)^2} dz, \text{ where } r \text{ is the circle}$ |z|=2.
- Q3. (a) What is the maximum possible order of a permutation in S_8 , the group of permutations on the eight numbers $\{1, 2, 3, ..., 8\}$? Justify your answer. (Majority of marks will be given for the justification).
 - (b) Let $f_n(x) = \frac{x}{1 + nx^2}$ for all real x. Show that f_n converges uniformly to a function f. What is f? Show that for $x \neq 0$, $f_n'(x) \to f'(x)$ but $f_n'(0)$ does not converge to f'(0). Show that the maximum value $|f_n(x)|$ can take is $\frac{1}{2\sqrt{n}}.$
 - (c) A manufacturer wants to maximise his daily output of bulbs which are made by two processes P_1 and P_2 . If x_1 is the output by process P_1 and x_2 is the output by process P_2 , then the total labour hours is given by $2x_1 + 3x_2$ and this cannot exceed 130, the total machine time is given by $3x_1 + 8x_2$ which cannot exceed 300 and the total raw material is given by $4x_1 + 2x_2$ and this cannot exceed 140. What should x_1 and x_2 be so that the total output $x_1 + x_2$ is maximum? Solve by the simplex method only. 14

Compute the double integral which will give the area of the region between the y-axis, the circle $(x-2)^2 + (y-4)^2 = z^2$ and the parabola $2y = x^2$. Compute the integral and find the area.

15

(b) Show that $\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx = \frac{\pi}{\sqrt{2}}$ by using contour integration and the residue theorem.

15

(c) Solve the following transportation problem:

10

	D_1	D_2	D_3	Supply
. O ₁	5	3	6	20
O_2	4	7	9	40
Demand	15	22	23	60

SECTION B

Q5. (a) Store the value of -1 in hexadecimal in a 32-bit computer.

14

12

- (b) Show that $\sum_{k=1}^{n} l_k(x) = 1$, where $l_k(x)$, k = 1 to n, are Lagrange's
 - fundamental polynomials.
- (c) Derive the Hamiltonian and equation of motion for a simple pendulum. 10
- (d) Find the solution of the equation $u_{xx} 3u_{xy} + u_{yy} = \sin(x 2y)$. 10
- **Q6.** (a) Solve the following system of linear equations correct to two places by Gauss-Seidel method:

$$x + 4y + z = -1$$
, $3x - y + z = 6$, $x + y + 2z = 4$.

- (b) Solve the differential equation $u_x^2 u_y^2$ by variable separation method. 12
- (c) In a steady fluid flow, the velocity components are u = 2kx, v = 2ky and w = -4kz. Find the equation of a streamline passing through (1, 0, 1).
- Q7. (a) Solve the heat equation

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}, \ 0 < \mathbf{x} < 1, \ \mathbf{t} > 0$$

subject to the conditions u(0, t) = u(1, t) = 0 for t > 0 and $u(x, 0) = \sin \pi x$, 0 < x < 1.

- (b) Find the moment of inertia of a uniform mass M of a square shape with each side a about its one of the diagonals.

 12
- (c) Use the classical fourth order Runge-Kutta methods to find solutions at x = 0.1 and x = 0.2 of the differential equation $\frac{dy}{dx} = x + y$, y(0) = 1 with step size h = 0.1.
- Q8. (a) Write a BASIC program to compute the product of two matrices.
 - (b) Suppose $\overrightarrow{v} = (x 4y)\hat{i} + (4x y)\hat{j}$ represents a velocity field of an incompressible and irrotational flow. Find the stream function of the flow.
 - (c) Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ for a string of length l fixed at both ends. The string is given initially a triangular deflection
 - $\mathbf{u}(\mathbf{x},0) = \begin{cases} \frac{2}{l}\mathbf{x}, & \text{if } 0 < \mathbf{x} < \frac{l}{2} \\ \frac{2}{l}(l-\mathbf{x}), & \text{if } \frac{l}{2} \leq \mathbf{x} < l \end{cases} \text{ with initial velocity } \mathbf{u}_{t}(\mathbf{x},0) = 0.$ 16