

 $\overline{}$

General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark Each

 $\overline{}$

MATHEMATICS - MA

Q.6 – Q.10 Carry TWO marks Each

 Γ

Useful data

Z - the set of integers.

R - the set of real numbers.

C - the set of complex numbers.

 $Im(z)$ - imaginary part of the complex number z.

 $Re(z)$ - real part of the complex number z.

 $\sup(A)$ - supremum of the set $A \subseteq \mathbb{R}$.

 $\inf(A)$ - infimum of the set $A \subseteq \mathbb{R}$.

 $M_n(\mathbb{F})$ - the set of $n \times n$ matrices over a field \mathbb{F} .

 $GL_n(\mathbb{F})$ - the set of $n \times n$ invertible matrices over a field \mathbb{F} .

 \mathbb{F}^n - the *n*-dimensional vector space over a field \mathbb{F} .

 I_n - the $n \times n$ identity matrix.

 S_n - the symmetric group on *n* elements.

 $A \setminus B = \{a \in A : a \notin B\}.$

 $\mathbb{Z}/n\mathbb{Z}$ - the cyclic group of order *n*.

ln - the natural logarithm.

 f', f'', f''' - the first-order, second-order, and third-order derivative, respectively, of a one variable function f

MCQ - 1 Mark

11. Consider the following condition on a function $f : \mathbb{C} \to \mathbb{C}$

$$
|f(z)| = 1 \quad \text{for all } z \in \mathbb{C} \text{ such that } \text{Im}(z) = 0. \tag{P}
$$

Which one of the following is correct?

- (A) There is a non-constant analytic polynomial f satisfying (P)
- (B) Every entire function f satisfying (P) is a constant function
- (C) Every entire function f satisfying (P) has no zeroes in $\mathbb C$
- (D) There is an entire function f satisfying (P) with infinitely many zeroes in $\mathbb C$
- 12. Let C be the ellipse $\{z \in \mathbb{C} : |z 2| + |z + 2| = 8\}$ traversed counter-clockwise. The value of the contour integral

$$
\oint_C \frac{z^2 dz}{z^2 - 2z + 2}
$$

is equal to

- (A) 0
- (B) $2\pi i$
- (C) $4\pi i$
- (D) $-\pi i$
- 13. Let X be a topological space and $A \subseteq X$. Given a subset S of X, let int(S), ∂S , and \overline{S} denote the interior, boundary, and closure, respectively, of the set S. Which one of the following is NOT necessarily true?
	- (A) $\text{int}(X \setminus A) \subseteq X \setminus \overline{A}$
	- (B) $A \subseteq \overline{A}$
	- (C) $\partial A \subseteq \partial$ (int(A))
	- (D) $(\overline{A}) \subseteq \partial A$
- 14. Consider the following limit

$$
\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_0^\infty e^{-x/\varepsilon} \left(\cos(3x) + x^2 + \sqrt{x+4} \right) dx.
$$

- (A) The limit does not exist
- (B) The limit exists and is equal to 0
- (C) The limit exists and is equal to 3
- (D) The limit exists and is equal to π
- 15. Let $\mathbb{R}[X^2, X^3]$ be the subring of $\mathbb{R}[X]$ generated by X^2 and X^3 . Consider the following statements.
	- I. The ring $\mathbb{R}[X^2, X^3]$ is a unique factorization domain.
	- II. The ring $\mathbb{R}[X^2, X^3]$ is a principal ideal domain.

- (A) Both I and II are TRUE
- (B) I is TRUE and II is FALSE
- (C) I is FALSE and II is TRUE
- (D) Both I and II are FALSE
- 16. Given a prime number p, let $n_p(G)$ denote the number of p–Sylow subgroups of a finite group G . Which one of the following is TRUE for every group G of order 2024?
	- (A) $n_{11}(G) = 1$ and $n_{23}(G) = 11$
	- (B) $n_{11}(G) \in \{1, 23\}$ and $n_{23}(G) = 1$
	- (C) $n_{11}(G) = 23$ and $n_{23}(G) \in \{1, 88\}$
	- (D) $n_{11}(G) = 23$ and $n_{23}(G) = 11$
- 17. Consider the following statements.
	- I. Every compact Hausdorff space is normal.
	- II. Every metric space is normal.

- (A) Both I and II are TRUE
- (B) I is TRUE and II is FALSE
- (C) I is FALSE and II is TRUE
- (D) Both I and II are FALSE
- 18. Consider the topology on Z with basis $\{S(a, b) : a, b \in \mathbb{Z} \text{ and } a \neq 0\}$, where

$$
S(a,b)=\{an+b:n\in\mathbb{Z}\}.
$$

Consider the following statements.

- I. $S(a, b)$ is both open and closed for each $a, b \in \mathbb{Z}$ with $a \neq 0$.
- II. The only connected set containing $x \in \mathbb{Z}$ is $\{x\}$.

- (A) Both I and II are TRUE
- (B) I is TRUE and II is FALSE
- (C) I is FALSE and II is TRUE
- (D) Both I and II are FALSE
- 19. Let $A =$ $\sqrt{ }$ $\overline{1}$ 0 2 2 0 \setminus and $T : M_2(\mathbb{C}) \to M_2(\mathbb{C})$ be the linear transformation given by $T(B) = AB$. The characteristic polynomial of T is
	- (A) $X^4 8X^2 + 16$
	- (B) $X^2 4$
	- (C) $X^2 2$
	- (D) $X^4 16$
- 20. Let $A \in M_n(\mathbb{C})$ be a normal matrix. Consider the following statements.
	- I. If all the eigenvalues of A are real, then A is Hermitian.
	- II. If all the eigenvalues of A have absolute value 1, then A is unitary.

- (A) Both I and II are TRUE
- (B) I is TRUE and II is FALSE
- (C) I is FALSE and II is TRUE
- (D) Both I and II are FALSE

21. Let

$$
A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix}
$$

and b be a 3×1 real column vector. Consider the statements.

- I. The Jacobi iteration method for the system $(A + \varepsilon I_3)x = b$ converges for any initial approximation and $\varepsilon > 0$.
- II. The Gauss–Seidel iteration method for the system $(A + \varepsilon I_3)\mathbf{x} = \mathbf{b}$ converges for any initial approximation and $\varepsilon > 0$.

- (A) Both I and II are TRUE
- (B) I is TRUE and II is FALSE
- (C) I is FALSE and II is TRUE
- (D) Both I and II are FALSE

22. For the initial value problem

$$
y' = f(x, y),
$$
 $y(x_0) = y_0,$

generate approximations y_n to $y(x_n)$, $x_n = x_0 + nh$, for a fixed $h > 0$ and $n =$ $1, 2, 3, \ldots$, using the recursion formula

$$
y_n = y_{n-1} + ak_1 + bk_2
$$
, where

$$
k_1 = h f(x_{n-1}, y_{n-1})
$$
 and
$$
k_2 = h f(x_{n-1} + \alpha h, y_{n-1} + \beta k_1).
$$

Which one of the following choices of a, b, α, β for the above recursion formula gives the Runge–Kutta method of order 2 ?

- (A) $a = 1, b = 1, \alpha = 0.5, \beta = 0.5$
- (B) $a = 0.5, b = 0.5, \alpha = 2, \beta = 2$
- (C) $a = 0.25, b = 0.75, \alpha = 2/3, \beta = 2/3$

(D)
$$
a = 0.5, b = 0.5, \alpha = 1, \beta = 2
$$

23. Let $u = u(x, t)$ be the solution of

$$
\frac{\partial u}{\partial t} - 4 \frac{\partial^2 u}{\partial x^2} = 0, \quad 0 < x < 1, \quad t > 0,
$$
\n
$$
u(0, t) = u(1, t) = 0, \quad t \ge 0,
$$
\n
$$
u(x, 0) = \sin(\pi x), \quad 0 \le x \le 1.
$$

Define $g(t) = \int_0^1$ 0 $(u(x, t))^2 dx$, for $t > 0$. Which one of the following is correct?

- (A) g is decreasing on $(0, \infty)$ and $\lim_{t \to \infty} g(t) = 0$
- (B) g is decreasing on $(0, \infty)$ and $\lim_{t \to \infty} g(t) = 1/4$
- (C) g is increasing on $(0, \infty)$ and $\lim_{t \to \infty} g(t)$ does not exist
- (D) g is increasing on $(0, \infty)$ and $\lim_{t \to \infty} g(t) = 3$

24. If y_1 and y_2 are two different solutions of the ordinary differential equation

$$
y' + \sin(e^x)y = \cos(e^{x+1}), \quad 0 \le x \le 1,
$$

then which one of the following is its general solution on $[0, 1]$?

- (A) $c_1y_1 + c_2y_2, c_1, c_2 \in \mathbb{R}$
- (B) $y_1 + c(y_1 y_2), \quad c \in \mathbb{R}$
- (C) $cy_1 + (y_1 y_2), \quad c \in \mathbb{R}$
- (D) $c_1(y_1 + y_2) + c_2(y_1 y_2), \quad c_1, c_2 \in \mathbb{R}$

25. Consider the following Linear Programming Problem P

minimize
$$
5x_1 + 2x_2
$$

subject to
$$
2x_1 + x_2 \le 2,
$$

$$
x_1 + x_2 \ge 1,
$$

$$
x_1, x_2 \ge 0.
$$

The optimal value of the problem P is equal to

 $(A) 5$

- $(B) 0$
- $(C) 4$
- (D) 2

NAT - 1 Mark

26. Let $p = (1, \frac{1}{2})$ $\frac{1}{2}, \frac{1}{3}$ $\frac{1}{3}, \frac{1}{4}$ $\frac{1}{4}$ $\in \mathbb{R}^4$ and $f : \mathbb{R}^4 \to \mathbb{R}$ be a differentiable function such that $f(p) = 6$ and $f(\lambda x) = \lambda^3 f(x)$, for every $\lambda \in (0, \infty)$ and $x \in \mathbb{R}^4$. The value of

$$
12\frac{\partial f}{\partial x_1}(p)+6\frac{\partial f}{\partial x_2}(p)+4\frac{\partial f}{\partial x_3}(p)+3\frac{\partial f}{\partial x_4}(p)
$$

is equal to _________ (answer in integer)

- 27. The number of non-isomorphic finite groups with exactly 3 conjugacy classes is equal to (answer in integer)
- 28. Let $f(x, y) = (x^2 y^2, 2xy)$, where $x > 0, y > 0$. Let g be the inverse of f in a neighborhood of $f(2, 1)$. Then the determinant of the Jacobian matrix of g at $f(2, 1)$ is equal to _______ (round off to TWO decimal places)
- 29. Let \mathbb{F}_3 be the field with exactly 3 elements. The number of elements in $GL_2(\mathbb{F}_3)$ is equal to ________ (answer in integer)
- 30. Given a real subspace W of \mathbb{R}^4 , let W^{\perp} denote its orthogonal complement with respect to the standard inner product on \mathbb{R}^4 . Let $W_1 = \text{Span}\{(1,0,0,-1)\}$ and $W_2 =$ Span $\{(2,1,0,-1)\}\$ be real subspaces of \mathbb{R}^4 . The dimension of $W_1^{\perp} \cap W_2^{\perp}$ over $\mathbb R$ is equal to ________ (answer in integer)
- 31. The number of group homomorphisms from Z/4Z to S⁴ is equal to (answer in integer)

32. Let $a \in \mathbb{R}$ and h be a positive real number. For any twice-differentiable function $f : \mathbb{R} \to \mathbb{R}$, let $P_f(x)$ be the interpolating polynomial of degree at most two that interpolates f at the points $a - h, a, a + h$. Define d to be the largest integer such that any polynomial q of degree d satisfies

$$
g''(a) = P_g''(a).
$$

The value of d is equal to $\qquad \qquad$ (answer in integer)

33. Let $P_f(x)$ be the interpolating polynomial of degree at most two that interpolates the function $f(x) = x^2|x|$ at the points $x = -1, 0, 1$. Then

$$
\sup_{x \in [-1,1]} |f(x) - P_f(x)| = \underline{\qquad}
$$

(round off to TWO decimal places)

34. The maximum of the function $f(x, y, z) = xyz$ subject to the constraints

 $x\overline{u} + \overline{u}z + \overline{z}x = 12, x > 0, \overline{u} > 0, \overline{z} > 0,$

is equal to ________ (round off to TWO decimal places)

35. If the outward flux of $\mathbf{F}(x, y, z) = (x^3, y^3, z^3)$ through the unit sphere $x^2 + y^2 + z^2 = 1$ is $\alpha \pi$, then α is equal to (round off to TWO decimal places)

MCQ - 2 Mark

36. Let
$$
\mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}
$$
 and $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Then
\n
$$
\sup \left\{ |f'(0)| : f \text{ is an analytic function from } \mathbb{D} \text{ to } \mathbb{H} \text{ and } f(0) = \frac{i}{2} \right\}
$$
\nis equal to
\n(A) $\frac{1}{4}$
\n(B) $\frac{1}{2}$

- $(C) 1$
- (D) 100
- 37. Let $S^1 = \{z \in \mathbb{C} : |z| = 1\}$. For which one of the following functions f does there exist a sequence of polynomials in z that uniformly converges to f on S^1 ?
	- (A) $f(z) = \overline{z}$
	- (B) $f(z) = \text{Re}(z)$
	- (C) $f(z) = e^z$
	- (D) $f(z) = |z + 1|^2$
- 38. Let $f : [0, 1] \to \mathbb{R}$ be a function. Which one of the following is a sufficient condition for f to be Lebesgue measurable?
	- (A) $|f|$ is a Lebesgue measurable function
	- (B) There exist continuous functions $g, h : [0, 1] \to \mathbb{R}$ such that $g \le f \le h$ on $[0, 1]$
	- (C) f is continuous almost everywhere on [0, 1]
	- (D) For each $c \in \mathbb{R}$, the set $\{x \in [0, 1] : f(x) = c\}$ is Lebesgue measurable
- 39. Let $g: M_2(\mathbb{R}) \to \mathbb{R}$ be given by $g(A) = \text{Trace}(A^2)$. Let 0 be the 2×2 zero matrix. The space $M_2(\mathbb{R})$ may be identified with \mathbb{R}^4 in the usual manner. Which one of the following is correct?
	- (A) 0 is a point of local minimum of q
	- (B) 0 is a point of local maximum of q
	- (C) 0 is a saddle point of q
	- (D) 0 is not a critical point of q
- 40. Consider the following statements.
	- I. There exists a proper subgroup G of $(\mathbb{Q}, +)$ such that \mathbb{Q}/G is a finite group.
	- II. There exists a subgroup G of $(\mathbb{Q}, +)$ such that \mathbb{Q}/G is isomorphic to $(\mathbb{Z}, +)$.

- (A) Both I and II are TRUE
- (B) I is TRUE and II is FALSE
- (C) I is FALSE and II is TRUE
- (D) Both I and II are FALSE
- 41. Let X be the space \mathbb{R}/\mathbb{Z} with the quotient topology induced from the usual topology on R. Consider the following statements.
	- I. X is compact.
	- II. $X \setminus \{x\}$ is connected for any $x \in X$.

- (A) Both I and II are TRUE
- (B) I is TRUE and II is FALSE
- (C) I is FALSE and II is TRUE
- (D) Both I and II are FALSE
- 42. Let $\langle \cdot, \cdot \rangle$ denote the standard inner product on \mathbb{R}^7 . Let $\Sigma = \{v_1, \ldots, v_5\} \subseteq \mathbb{R}^7$ be a set of unit vectors such that $\langle v_i, v_j \rangle$ is a *non-positive* integer for all $1 \le i \ne j \le 5$. Define $N(\Sigma)$ to be the number of pairs (r, s) , $1 \le r, s \le 5$, such that $\langle v_r, v_s \rangle \ne 0$. The maximum possible value of $N(\Sigma)$ is equal to
	- $(A) 9$
	- (B) 10
	- (C) 14
	- (D) 5
- 43. Let $f(x) = |x| + |x 1| + |x 2|$, $x \in [-1, 2]$. Which one of the following numerical integration rules gives the exact value of the integral

$$
\int_{-1}^{2} f(x) dx
$$

- (A) The Simpson's rule
- (B) The trapezoidal rule
- (C) The composite Simpson's rule by dividing $[-1, 2]$ into 4 equal subintervals
- (D) The composite trapezoidal rule by dividing [−1, 2] into 3 equal subintervals

44. Consider the initial value problem (IVP)

$$
y' = e^{-y^2} + 1,
$$

$$
y(0) = 0.
$$

- I. IVP has a unique solution on \mathbb{R} .
- II. Every solution of IVP is bounded on its maximal interval of existence.

- (A) Both I and II are TRUE
- (B) I is TRUE and II is FALSE
- (C) I is FALSE and II is TRUE
- (D) Both I and II are FALSE
- 45. Let A be a 2×2 non-diagonalizable real matrix with a real eigenvalue λ and v be an eigenvector of A corresponding to λ . Which one of the following is the general solution of the system $y' = Ay$ of first-order linear differential equations?
	- (A) $c_1e^{\lambda t}\mathbf{v} + c_2te^{\lambda t}\mathbf{v}$, where $c_1, c_2 \in \mathbb{R}$
	- (B) $c_1e^{\lambda t}\mathbf{v} + c_2t^2e^{\lambda t}\mathbf{v}$, where $c_1, c_2 \in \mathbb{R}$
	- (C) $c_1e^{\lambda t}\mathbf{v} + c_2e^{\lambda t}(t\mathbf{v} + \mathbf{u})$, where $c_1, c_2 \in \mathbb{R}$ and \mathbf{u} is a 2×1 real column vector such that $(A - \lambda I_2)\mathbf{u} = \mathbf{v}$
	- (D) $c_1e^{\lambda t}\mathbf{v} + c_2te^{\lambda t}(\mathbf{v} + \mathbf{u})$, where $c_1, c_2 \in \mathbb{R}$ and \mathbf{u} is a 2×1 real column vector such that $(A - \lambda I_2)\mathbf{u} = \mathbf{v}$

46. Let $D = \{(x, y) \in \mathbb{R}^2 : x > 0 \text{ and } y > 0\}$. If the following second-order linear partial differential equation

$$
y^{2} \frac{\partial^{2} u}{\partial x^{2}} - x^{2} \frac{\partial^{2} u}{\partial y^{2}} + y \frac{\partial u}{\partial y} = 0
$$
 on D

is transformed to

$$
\left(\frac{\partial^2 u}{\partial \eta^2} - \frac{\partial^2 u}{\partial \xi^2}\right) + \left(\frac{\partial u}{\partial \eta} + \frac{\partial u}{\partial \xi}\right) \frac{1}{2\eta} + \left(a\frac{\partial u}{\partial \eta} + b\frac{\partial u}{\partial \xi}\right) \frac{1}{2\xi} = 0 \text{ on } D
$$

for some $a, b \in \mathbb{R}$, via the co-ordinate transform $\eta = \frac{x^2}{2}$ $\frac{c}{2}$ and $\xi =$ y^2 $\frac{9}{2}$, then which one of the following is correct?

(A) $a = 2, b = 0$

(B)
$$
a = 0, b = -1
$$

(C) $a = 1, b = -1$

(D)
$$
a = 1, b = 0
$$

47. Let
$$
\ell^p = \left\{ x = (x_n)_{n \ge 1} : x_n \in \mathbb{R}, ||x||_p = \left(\sum_{n=1}^{\infty} |x_n|^p \right)^{1/p} < \infty \right\}
$$
 for $p = 1, 2$. Let

$$
\mathcal{C}_{00} = \left\{ (x_n)_{n \ge 1} : x_n = 0 \text{ for all but finitely many } n \ge 1 \right\}.
$$

For
$$
x = (x_n)_{n \ge 1} \in C_{00}
$$
, define $f(x) = \sum_{n=1}^{\infty} \frac{x_n}{\sqrt{n}}$. Consider the following statements.

I. There exists a continuous linear functional F on $(\ell^1, \|\cdot\|_1)$ such that $F = f$ on \mathcal{C}_{00} . II. There exists a continuous linear functional G on $(\ell^2, \|\cdot\|_2)$ such that $G = f$ on \mathcal{C}_{00} . Which one of the following is correct?

- (A) Both I and II are TRUE
- (B) I is TRUE and II is FALSE
- (C) I is FALSE and II is TRUE
- (D) Both I and II are FALSE

MSQ - 2 Mark

48. Let $\ell_{\mathbb{Z}}^2 =$ $\left\{ (x_j)_{j \in \mathbb{Z}} : x_j \in \mathbb{R} \text{ and } \sum_{j=1}^{\infty} \right\}$ j=−∞ $x_j^2 < \infty$ λ endowed with the inner product $\langle x, y \rangle = \sum_{n=0}^{\infty}$ j=−∞ $x_j y_j,$ $x = (x_j)_{j \in \mathbb{Z}}, y = (y_j)_{j \in \mathbb{Z}} \in \ell_{\mathbb{Z}}^2.$

Let $T: \ell^2_{\mathbb{Z}} \to \ell^2_{\mathbb{Z}}$ be given by $T((x_j)_{j \in \mathbb{Z}}) = (y_j)_{j \in \mathbb{Z}}$, where

$$
y_j=\frac{x_j+x_{-j}}{2},\quad j\in\mathbb{Z}.
$$

Which of the following is/are correct?

- (A) T is a compact operator
- (B) The operator norm of T is 1
- (C) T is a self-adjoint operator
- (D) Range (T) is closed
- 49. Let X be the normed space $(\mathbb{R}^2, \|\cdot\|)$, where

$$
||(x, y)|| = |x| + |y|, \quad (x, y) \in \mathbb{R}^2.
$$

Let $S = \{(x, 0) : x \in \mathbb{R}\}$ and $f : S \to \mathbb{R}$ be given by $f((x, 0)) = 2x$ for all $x \in \mathbb{R}$. Recall that a Hahn–Banach extension of f to X is a continuous linear functional F on X such that $F|_S = f$ and $||F|| = ||f||$, where $||F||$ and $||f||$ are the norms of F and f on X and S, respectively. Which of the following is/are true?

- (A) $F(x, y) = 2x + 3y$ is a Hahn–Banach extension of f to X
- (B) $F(x, y) = 2x + y$ is a Hahn–Banach extension of f to X
- (C) f admits infinitely many Hahn–Banach extensions to X
- (D) f admits exactly two distinct Hahn–Banach extensions to X
- 50. Let $\{[a, b) : a, b \in \mathbb{R}, a < b\}$ be a basis for a topology τ on \mathbb{R} . Which of the following is/are correct?
	- (A) Every (a, b) with $a < b$ is an open set in (\mathbb{R}, τ)
	- (B) Every [a, b] with $a < b$ is a compact set in (\mathbb{R}, τ)
	- (C) (\mathbb{R}, τ) is a first-countable space
	- (D) (\mathbb{R}, τ) is a second-countable space
- 51. Let $T, S : \mathbb{R}^4 \to \mathbb{R}^4$ be two non–zero, non–identity \mathbb{R} -linear transformations. Assume $T^2 = T$. Which of the following is/are TRUE?
	- (A) T is necessarily invertible
	- (B) T and S are similar if $S^2 = S$ and $\text{Rank}(T) = \text{Rank}(S)$
	- (C) T and S are similar if S has only 0 and 1 as eigenvalues
	- (D) T is necessarily diagonalizable
- 52. Let $p_1 < p_2$ be the two fixed points of the function $g(x) = e^x 2$, where $x \in \mathbb{R}$. For $x_0 \in \mathbb{R}$, let the sequence $(x_n)_{n \geq 1}$ be generated by the fixed point iteration

$$
x_n = g(x_{n-1}), \quad n \ge 1.
$$

- (A) $(x_n)_{n\geq 0}$ converges to p_1 for any $x_0 \in (p_1, p_2)$
- (B) $(x_n)_{n>0}$ converges to p_2 for any $x_0 \in (p_1, p_2)$
- (C) $(x_n)_{n>0}$ converges to p_2 for any $x_0 > p_2$
- (D) $(x_n)_{n>0}$ converges to p_1 for any $x_0 < p_1$

53. Which of the following is/are eigenvalue(s) of the Sturm–Liouville problem

$$
y'' + \lambda y = 0, \qquad 0 \le x \le \pi,
$$

$$
y(0) = y'(0),
$$

$$
y(\pi) = y'(\pi)?
$$

- (A) $\lambda = 1$
- (B) $\lambda = 2$
- (C) $\lambda = 3$
- (D) $\lambda = 4$

54. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that

$$
f(x,y) = \begin{cases} \left(1 - \cos\frac{x^2}{y^2}\right)\sqrt{x^2 + y^2}, & \text{if } y \neq 0, x \in \mathbb{R}, \\ 0, & \text{otherwise.} \end{cases}
$$

Which of the following is/are correct?

- (A) f is continuous at $(0, 0)$, but not differentiable at $(0, 0)$
- (B) f is differentiable at $(0, 0)$
- (C) All the directional derivatives of f at $(0, 0)$ exist and they are equal to zero
- (D) Both the partial derivatives of f at $(0, 0)$ exist and they are equal to zero

55. For an integer n, let $f_n(x) = xe^{-nx}$, where $x \in [0,1]$. Let $S := \{f_n : n \ge 1\}$. Consider the metric space $(C([0, 1]), d)$, where

$$
d(f,g)=\sup_{x\in [0,1]}\left\{|f(x)-g(x)|\right\},\quad f,g\in \mathcal{C}([0,1]).
$$

Which of the following statement(s) is/are true?

- (A) S is an equi-continuous family of continuous functions
- (B) S is closed in $(C([0, 1]), d)$
- (C) S is bounded in $(C([0, 1]), d)$
- (D) S is compact in $(C([0, 1]), d)$
- 56. Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be an \mathbb{R} -linear transformation such that 1 and 2 are the only eigenvalues of T. Suppose the dimensions of Kernel(T – I_4) and Range(T – 2 I_4) are 1 and 2, respectively. Which of the following is/are possible (upper triangular) Jordan canonical form(s) of T?
	- (A)

(B)

(C)

(D)

NAT - 2 Mark

57. Let $L^2([-1, 1])$ denote the space of all real-valued Lebesgue square-integrable functions on $[-1, 1]$, with the usual norm $\|\cdot\|$. Let \mathcal{P}_1 be the subspace of $L^2([-1, 1])$ consisting of all the polynomials of degree at most 1. Let $f \in L^2([-1,1])$ be such that $||f||^2 = \frac{18}{5}$ $\frac{18}{5}, \int_{-1}^{1}$ −1 $f(x)dx = 2$, and \int_0^1 −1 $xf(x)dx = 0$. Then $\inf_{g \in \mathcal{P}_1} ||f - g||^2 =$

(round off to TWO decimal places)

58. The maximum value of $f(x, y, z) = 10x + 6y - 8z$ subject to the constraints

$$
5x - 2y + 6z \leq 20,
$$

$$
10x + 4y - 6z \leq 30,
$$

$$
x, y, z \geq 0,
$$

is equal to (round off to TWO decimal places)

- 59. Let $K \subseteq \mathbb{C}$ be the field extension of $\mathbb Q$ obtained by adjoining all the roots of the polynomial equation $(X^2 - 2)(X^2 - 3) = 0$. The number of distinct fields F such that $\mathbb{Q} \subseteq F \subseteq K$ is equal to \qquad (answer in integer)
- 60. Let H be the subset of S_3 consisting of all $\sigma \in S_3$ such that

$$
\text{Trace}(A_1 A_2 A_3) = \text{Trace}(A_{\sigma(1)} A_{\sigma(2)} A_{\sigma(3)}),
$$

for all $A_1, A_2, A_3 \in M_2(\mathbb{C})$. The number of elements in H is equal to _______ (answer in integer)

61. Let $\mathbf{r} : [0,1] \to \mathbb{R}^2$ be a continuously differentiable path from $(0, 2)$ to $(3, 0)$ and let $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\mathbf{F}(x, y) = (1 - 2y, 1 - 2x)$. The line integral of F along r

$$
\int \mathbf{F} \cdot d\mathbf{r}
$$

is equal to ________ (round off to TWO decimal places)

62. Let $u = u(x, t)$ be the solution of the initial value problem

$$
\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, \quad x \in \mathbb{R}, t > 0,
$$

$$
u(x, 0) = 0, \quad x \in \mathbb{R},
$$

$$
\frac{\partial u}{\partial t}(x, 0) = \begin{cases} x^4(1-x)^4, & \text{if } 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}
$$

If α = inf{t > 0 : u(2, t) > 0}, then α is equal to (round off to TWO decimal places)

63. The boundary value problem

$$
x^{2}y'' - 2xy' + 2y = 0, \t 1 \le x \le 2,
$$

$$
y(1) - y'(1) = 1,
$$

$$
y(2) - ky'(2) = 4,
$$

has infinitely many distinct solutions when k is equal to $______$ (round off to TWO decimal places)

64. The global maximum of $f(x, y) = (x^2 + y^2)e^{2-x-y}$ on $\{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\}$ is equal to _________ (round off to TWO decimal places)

65. Let $k \in \mathbb{R}$ and $D = \{(r, \theta) : 0 < r < 2, 0 < \theta < \pi\}$. Let $u(r, \theta)$ be the solution of the following boundary value problem

$$
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \quad (r, \theta) \in D,
$$

$$
u(r, 0) = u(r, \pi) = 0, \quad 0 \le r \le 2,
$$

$$
u(2, \theta) = k \sin(2\theta), \quad 0 < \theta < \pi.
$$

If $u(1,$ π 4 $= 2$, then the value of k is equal to _________ (round off to TWO decimal places)